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MCCAIG (1988a) has presented an interesting analogy 
between the kinematic constraints of rigid plates at triple 
junctions to the generally non-rigid behavior of fault 
bends and fault intersections at smaller scales. Based on 
the stability criteria for rigid blocks in velocity space, 
geometric constraints on the non-rigid behavior of fault 
blocks are proposed in terms of likely wallrock strains. 
The analysis can be a significant contribution to unravel-' 
ing the kinematics of structures on many scales, and 
provides one additional constraint on complex natural 
systems with many degrees of freedom. 

In this discussion, I would like to suggest the follow- 
ing: (a) the kinematic scenarios which increase a june- 
tion's stability may vary over a much wider range of 
geometries than depicted by McCaig; (b) additional 
kinematic solutions may be contrived which also satisfy 
the conditions of stability; (c) although the analysis is 
successful at identifying certain deformation 
mechanisms in velocity space, it may overlook others 
that contribute to the waUrock strain such as layer- 
parallel shear. As a result, the method by itself provides 
limited constraints on displacement rates and the orien- 
tation of structures such as faults, kink zones and cleav- 
age. This analysis would be best coupled with dynamic 
constraints (e.g. from fabric data as well as theoretical 
and experimental models) to eliminate the numerous 
unlikely geometric solutions. An example of this coupl- 
ing is suggested for a simple fault bend. As a minor but 
preliminary note, clarification of the term 'stability' 
seems appropriate. 

DEFINITION OF STABILITY 

McCaig (1988a) suggests, as did McKenzie & Morgan 
(1969), that a stable triple junction is one whose con- 
figuration remains unchanged after an increment of 
plate movement. This is an ambiguous usage of the term 
'stable' since it has been suggested that triple junctions 
may change configurations while satisfying 'stability' in 
velocity space, as well as configurations that remain 
unchanged regardless of an upset of the stability condi- 
tion (e.g. Apotria & Gray 1988). Furthermore, McCaig 
has suggested an example where a stable fault bend 
evolves to another stable configuration by ramp collapse 
(McCaig's figs. 3a & b). In a strict sense, triple junction 

stability is defined in velocity space where two conditions 
must be met: (a) the relative velocity vectors of the rigid 
blocks must sum to zero; and (b) a reference frame must 
exist in velocity space which is stationary with respect to 
a point of uniform velocity on each of the boundaries. 
The dashed lines in the graphical representation of 
stability (McCaig's fig. 1) depict the loci of points of 
uniform velocity for that boundary. If the three dashed 
lines intersect at a point, then there exists a point of 
uniform velocity on each boundary which is fixed, this is 
the velocity of the triple junction. McCaig, in his formu- 
lation of kink zones, has cleverly made use of the fact 
that the boundary between two blocks need not have the 
same velocity as either constituent block. 

FORETHRUST AND BACKTHRUST SYSTEMS 

In general, the relative displacement rates between 
fault blocks are poorly constrained from field evidence, 
and if known, are only time averages. Because the 
relative velocity of fault blocks is likely to be non- 
uniform, employing the stability criteria becomes a 
much more complicated and ill-constrained task. During 
the evolution of a three-fault system, displacement rates 
are likely to change due to perturbations in the geometry 
of fault surfaces as well as reorientation of local stress 
fields, both having a profound effect on the resulting 
wallrock strains. However, for the purposes of this 
discussion, it is assumed that displacement rates are 
continuous. This discussion omits the treatment of listric 
normal faults and strike-slip faults, although the same 
considerations apply. 

With regard to forethrust and backthrust systems, 
volume loss is suggested by McCaig as a possible 
mechanism for maintaining stability, where one block is 
subdivided into two, thereby creating a 'quadruple 
junction'. The new boundary (CC' in McCaig's fig. 2a) is 
the locus of volume loss. The growth rate of this locus is 
equal to the vector from the midpoint of CC' to A. While 
it is realized that the 'locus' may actually be a distributed 
zone, there are few constraints provided by the vector 
analysis alone on its orientation and magnitude. The 
orientation of the volume loss zone, perhaps developed 
as a pressure-solution cleavage, is drawn perpendicular 
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Fig. 1. Alternative kinematic scenarios which satisfy the condition of stability+ (a) Preferential volume loss between blocks 
A and C in direct space and velocity space. The velocity triangle for this triple junction collapses to a single vector. The 
orientation of the zone can vary within 180". Complete volume loss of block A or C are end-members of a spectrum, where 
the locus (dotted line) is fixed to block C or A, respectively, in velocity space. (b) Under the rigid block assumption, a three 

fault junction is stable if separation occurs between block A and B. 

to the relative velocity CC'.  Geometrically, this is a 
special case where the volume loss is symmetrical about 
the zone, however, it could have any orientation 
between faults A C  and AC',  with varying degrees of 
asymmetry, as long as the locus cc' in velocity space 
passes through point A. The vector analysis further 
suggests that the magnitude and orientation of the 
volume loss zone at boundary CC' is a function only of 
the orientations and relative displacement rates of faults 
A C  and AC'.  This can be misleading because it ignores 
the primary controls on volume loss processes, namely 
the rheology of the wallrock material and the differential 
stress. The orientation of the volume loss zone would be 
more usefully constrained if the orientation of the princi- 
pal stresses in block C at the time of deformation could 
be obtained. 

The kink zone is an interesting alternative to volume 
loss, where there is generally no discrete and stationary 
fault boundary between sub-blocks A and A' ,  but a zone 
of kinking (McCaig's fig. 2b). The kink zone need not be 
vertical as shown by McCaig, but can be at any angle 
between fault A B  and fault AC. Varying the orientation 
of the kink zone results in a trade-off between relative 
velocities AA', AC and A'C. The kink zone is not fixed 
to either A or A' ,  but to block C. Apparently,  the 
displacement rate across the kink zone (vector AA') is 
determined solely by the dip of fault A ' C  if the velocity 
AB is fixed. However ,  the mechanical behavior of block 
A exerts a fundamental control on the displacement rate 
AA', and whether  or not there is a loss of cohesion across 
the kink zone. More complicated deformation is possible 

if vector AA' is not parallel to the kink zone (as in the 
case of layer-parallel shear discussed below). 

This junction can also be stabilized bv a slightly 
different process whereby volume is lost preferentially 
between blocks A and C. In this case the velocity triangle 
collapses to a single vector, and no sub-blocks need be 
formed (Fig. la).  The locus of uniform velocities along 
boundary A C  (the dashed line ac) is fixed to block C if 
the entire volume is lost from block A. fixed to A if 
volume is lost from block C, fixed at any point in 
between AC if volume is lost from both blocks, or lastly, 
the boundary A C  may move with time. The orientation 
of a volume loss boundary can span 180" between bound- 
ary A B  and BC. 

There is still yet another  kinematic alternative to 
volume loss and kinking processes which maintains the 
rigid block assumption, and involves the separation of  
blocks A and B (analogous to plate spreading). An 
example of where this might occur is at the toe of a blind 
thrust, which is a special case of the forethrust-back- 
thrust system (Fig. lb).  Within a incipient detachment 
horizon, before the arrival of the thrust toe (block C), 
there may be no motion between A and B, or kine- 
matically stable sliding involving only the two blocks. As 
the toe (triple junction) passes, there is no fault-parallel 
motion between blocks A and B (which is unstable for 
rigid blocks), but separation as block C is inserted 
between A and B, effectively peeling back the cover 
rocks of block A. The observation of wallrock strains 
near fault bends suggests that. although this solution is 
geometrically possible, it is mechanically unlikely. 
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FAULT BENDS AND RAMP COLLAPSE 

Hangingwall strain models such as those of Sanderson 
(1982) suggests that the strain be accommodated by 
either (a) vertical shear, or (b) a layer-parallel shear 
mechanism at a fault bend. The latter, a more probable 
mechanism in upper, 'colder' levels of layered thrust 
belts, has been further developed by Suppe (1983). 
McCaig has demonstrated that the vertical shear 
mechanism (or shear at a high angle to bedding) provides 
a stable configuration in velocity space, where the 
relative velocity between A and A' is parallel to the kink 
zone (McCaig's fig. 3a). However, layer-parallel shear is 
apparently not reconcilable in velocity space. If the fault 
bend is drawn as a triple junction, the relative velocity 
between blocks A and A',  which would be parallel to the 
fault surface for layer parallel shear, is not compatible 
with the orientation of the kink zone, and is therefore 
unstable. In this case, the vector analysis alone provides 
no indication of the actual deformation mechanism. 

DYNAMIC CONSIDERATIONS 

In the previous examples, I have tried to demonstrate 
that vector analysis at fault intersections and bends, in 
and of itself, provides very few constraints on the 
displacement rates and orientations of wallrock strain 
features. Therefore, the method would be best coupled 
with some appreciation of the mechanical behavior of 
the wallrock, as well as the state of stress in the region 
undergoing the deformation. This information could be 
deduced from fabric data in the wallrock, as well as 
insights from theoretical and experimental models. 

A large body of literature exists concerning the 
mechanics and kinematics of thrust ramp deformation, a 
special case of the forethrust-backthrust system. Here, I 
will present a simple example of the hangingwall strains 
incurred during the development of a forethrust and 
backthrust, similar to McCaig's figs. 2(a) and 3(a), where 
reasonable estimates of the orientations of the principal 
stresses are known from experimental and theoretical 
models. The example illustrates the importance of con- 
sidering the end-members of mechanical behavior (i.e. 
vertical vs layer-parallel shear) on the strains imposed at 
a fault bend. 

Hangingwall accommodation structures at a fault 
bend are developed in non-scaled rock model experi- 
ments of thrust ramps at confining pressure (e.g. Serra 
1977, Chester 1985). Discrete backthrusts with small 
displacements are nucleated as the hangingwall moves 
through the lower ramp hinge. The orientation of micro- 
cracks near the hinge in the experiments suggests that 
the principal stresses are inclined downward toward the 
foreland. During subsequent increments of motion, the 
backthrust becomes inactive as it passes up the ramp, 
while another active backthrust forms at the hinge. 
These experiments demonstrate that this type of triple 
junction is unstable for rigid blocks, and are stabilized by 

a kink zone fixed to the lower ramp hinge, through which 
hangingwall material passes (McCaig's fig. 3a). In rock 
models in which the hangingwall is layered with alter- 
nating strong and weak material, layer-parallel slip is a 
viable mechanism, and only minor development of back- 
thrusts is observed (Chester 1985). In this case, layer- 
parallel slip reduces the bending stresses at the lower 
hinge, and reduces the need for a backthrust to accom- 
modate bending. 

The perturbation of the principal stresses near the 
lower ramp hinge has been substantiated by theoretical 
models (e.g. Wiltschko 1981). In this case, bending 
stresses with a homogeneous linear viscous hangingwall 
in the outer arc of the lower hinge may be extensional, 
with the maximum principal stresses inclined downward 
toward the foreland, the angle of inclination being an 
increasing function of ramp dip as well as hangingwall 
viscosity. Furthermore, as the competency of the 
hangingwali decreased (the equivalent of an increase in 
the layer-parallel shear mechanism), the bending 
resistance, the amount of extension, and therefore the 
inclination of the principal stresses near the lower hinge, 
all decreased. As in the rock model experiments, this 
suggests that layering anisotropy in the hangingwaU 
reduces the need for backthrusting due to decreased 
bending stresses. 

Thus, for this simple case, mechanical arguments 
have helped to constrain the orientations of the principal 
stresses, and by inference, the orientation of backthrusts 
at the apparent lower ramp hinge triple junction. The 
orientation of a kink zone will depend upon the amount 
of extension due to bending at the lower ramp hinge, if 
sliding resistance is small. The amount of extension 
depends on the ramp dip as well as the relative contribu- 
tion of layer-parallel shear to the overall deformation. 
Because back thrusting is not likely to be the sole 
deformation mechanism at a fault bend, knowledge of 
the principal stresses provided additional constraints on 
the other mechanisms such as volume loss, that the 
vector analysis alone cannot. 

In conclusion, McCaig's (1988a) application of vector 
diagrams in velocity space to fault bends and inter- 
sections is a significant contribution to deducing the 
kinematics of structures on many scales. McCaig clearly 
states that the vector analysis is not intended to supplant 
existing techniques for dealing with such fault systems. It 
has been the purpose of this discussion to suggest that 
the method should be coupled, if possible, with a 
dynamic appreciation of the problem. Appropriate cau- 
tion should be used insofar as many stabilizing 
mechanisms are possible, and for any particular one, 
there is generally a wide range of possible configurations 
in velocity space that will satisfy the stability criteria. 
The method does eliminate certain configurations that 
are geometrically impossible, yet ignores the additional 
constraints provided by mechanics (i.e. vertical vs layer- 
parallel shear) which is ultimately responsible for 
wallrock strain. These obstacles emphasize the beauty of 
the rigid block assumption. 


